Approval Sheet | Customer: | |----------------------------| | Item: High Power LED – 1 W | | Part No.: WLY28-140-XX1 | | Customer P/N: | | | | Customer Approval | | | | | | | | | | | # **PACKAGE DIMENSIONS** #### Note: - 1. All Dimensions are in millimeters - 2. Tolerance is ± 0.25 mm (0.010") Unless otherwise specified. # **Device Selection Guide** | Material | Emitting Color | Lens Type | |----------|----------------|-------------| | | Yellow | Water Clear | # **Absolute Maximum Ratings at Ta=25** ℃ | Parameter | Symbol | Max | Unit | |--|-----------------|--------------|------| | Power Dissipation | P _D | 1 | W | | Peak Forward Current 1/10 Duty Cycle,0.1ms Pulse Width | I _{FP} | 500 | mA | | Continuous Forward Current | I _F | 350 | mA | | Reverse Voltage | V_{R} | 5 | V | | ESD Sensitivity | ESD | 2000 | V | | Operating Temperature Range | Topr | -40℃ to+80℃ | | | Storage Temperature Range | Tstg | -25℃ to+100℃ | | # **Electrical Optical Characteristics at Ta=25** ℃ | Parameter | Symbol | Min | Тур | Max | Unit | Conditio | |---------------------|--------|-----|-----|-----|------|----------| | Forward Voltage | VF | 2.0 | 2.4 | | V | IF=350mA | | luminous flux | IV | 20 | 30 | | lm | IF=350mA | | Dominant Wavelength | λd | 588 | 592 | | nm | IF=350mA | | Temperature Color | ССТ | | | | K | IF=350mA | | Reverse Current | IR | | | 10 | μA | IF=350mA | | Viewing Angle | 201/2 | | 120 | | deg | IF=350mA | #### Note. - 1. 201/2 is the off axis angle from lamp centerline where the luminous intensity is 1/2 of the peak value. - 2. View angle tolerance is \pm 10 REV: A/0 APPOVED: PAGE: 3/7 CHECKED: DATE: 2010-7-12 DRAWN: # **Typical Electro-Optical Characteristics Curves** Relative Luminous Intensity vs Forward Current, *T* Ambient=250 C Forward Current Derating Curve, Derating based on Tj_{MAX}=125° C Relative Luminous Intensity vs Forward Current, *T Ambient*=25o C # Relative Spectral Distribution, IF=350mA, T Ambient=25o C # **Typical Representative Spatial Radiation Pattern** #### Note. - 1.201/2 is the off axis angle from lamp centerline where the luminous intensity is 1/2 of the peak value. - 2. View angle tolerance is ± 10 #### **Luminous Flux Bin Table** (Im at 350mA) | BIN | Ld | Le | Lf | Lg | |---------------|-------|-------|-------|-------| | Luminous Flux | 20-30 | 30-40 | 40-50 | 50-60 | ^{*}Measure Uncertainty of Luminous Flux:±10% #### **Forward Voltage Combination**(V at 350mA) | BIN | N | 0 | Р | Q | |-----------------|---------|---------|---------|---------| | Forward Voltage | 2.0-2.2 | 2.2-2.4 | 2.4-2.6 | 2.6-2.8 | ^{*}Measure Uncertainty of Forward Voltage:±0.1V REV: A/0 APPOVED: PAGE: 5/7 CHECKED: DATE: 2010-7-12 DRAWN: #### **Packing Specification** ◆Anti-electrostatic bag #### 1. Storage - 1. Do not open the moisture proof bag before the devices are ready to use. - 2. Before the package is opened, LEDs should be stored at temperatures less than 30° C and humidity less than 90° M. - 3. LEDs should be used within a year. - 4. After the package is opened, LEDs should be stored at temperatures less than 30° C and humidity less than 60° K. - 5. LEDs should be used within 168 hours (7 days) after the package is opened. - 6. If the moisture absorbent material (silicone gel) has faded away or LEDs have exceeded the storage time, baking treatment should be implemented based on the following conditions: pre-curing at $60\pm5^{\circ}$ C for 24 hours. #### 2. Thermal Management - 1). For maintaining the high flux output and achieving reliability, LEDs should be mounted on a metal core printed circuit board (MCPCB) or other kinds of heat sink with proper thermal connection to dissipate approximately 1W of thermal - 2). Don't reflow soldwer. - 3). Sufficient thermal management must be implemented. Otherwise, the junction temperature of die may exceed over the limit at high current driving conditions and the LEDs' lifetime may be decrease dramatically. - 4). For further thermal management suggestions, please consult the Wenliang Design Guide or local representatives for assistance. - 5). Special thermal designs are also recommended to take in outer heat sink design, such as FR4 PCB on Aluminum with thermal vias or FPC on Aluminum with thermal conductive adhesive, etc. REV: A/0 APPOVED: PAGE: 6/7 CHECKED: DATE: 2010-7-12 DRAWN: # 3. Proper Handling Please do not touch leds as four pictures listed below. Do not press on the resin directly. Do not stack the led together. Do not touch the resin. Avoid directly contacting with nozzle.